导读:新sat试题下载【OG数学真题】!新SAT数学相比改革之前难度有所增加,所以在新SAT数学备考期间考生需要通过有效的练习,掌握新SAT数学考察知识点,下面聚培训为大家精选了新SAT数学OG真题,大家可以做下练习。新satOG数学真题精选:1.Whichofthefollowingexpressionsisequalto0forsomevalueofx?A.∣x−1∣−1∣x−
新sat试题下载【OG数学真题】!新SAT数学相比改革之前难度有所增加,所以在新SAT数学备考期间考生需要通过有效的练习,掌握新SAT数学考察知识点,下面聚培训为大家精选了新SAT数学OG真题,大家可以做下练习。
新satOG数学真题精选:
1.Which of the following expressions is equal to 0 for some value of x?
A . ∣x−1∣−1∣x−1∣−1
B . ∣x+1∣+1∣x+1∣+1
C . ∣1−x∣+1∣1−x∣+1
D . ∣x−1∣+1
答案解析
Choice A is correct.
The expression ∣x−1∣−1∣x−1∣−1 will equal 0 if midx−1∣=1midx−1∣=1. This is true for x=2x=2 and for x=0x=0. For example, substituting x=2x=2 into the expression ∣x−1∣−1∣x−1∣−1 and simplifying the result yields ∣2−1∣−1=∣1∣−1=1−1=0∣2−1∣−1=∣1∣−1=1−1=0. Therefore, there is a value of x for which ∣x−1∣−1∣x−1∣−1 is equal to 0.
Choice В is incorrect. By definition, the absolute value of any expression is a nonnegative number. Substituting any value for xx into the expression ∣x+1∣∣x+1∣ will yield a nonnegative number as the result. Because the sum of a nonnegative number and a positive number is positive, ∣x+1∣+1∣x+1∣+1 will be a positive number for any value of xx. Therefore, ∣x+1∣+1≠0∣x+1∣+1≠0 for any value of xx. Choice С is incorrect. By definition, the absolute value of any expression is a nonnegative number. Substituting any value for xx into the expression ∣1−x∣∣1−x∣ will yield a nonnegative number as the result. Because the sum of a nonnegative number and a positive number is positive, ∣1−x∣+1∣1−x∣+1 will be a positive number for any value of xx. Therefore, ∣x−1∣+1≠0∣x−1∣+1≠0 for any value of xx. Choice D is incorrect. By definition, the absolute value of any expression is a nonnegative number. Substituting any value for x into the expression ∣x−1∣∣x−1∣ will yield a nonnegative number as the result. Because the sum of a nonnegative number and a positive number is positive, ∣x−1∣+1∣x−1∣+1 will be a positive number for any value of xx. Therefore, ∣x−1∣+1≠0∣x−1∣+1≠0 for any value of xx.
2.
3.If f(x)=−2x+5f(x)=−2x+5, what is f(−3x)f(−3x) equal to?
A . −6x−5−6x−5
B . 6x+56x+5
C . 6x−56x−5
D . 6x2−15x6x2−15x
答案解析
Choice В is correct.
If f(x)=−2x+5f(x)=−2x+5, then one can evaluate f(−3x)f(−3x) by substituting −3x−3x for every instance of xx. This yields f(−3х)=−2(−3x)+5f(−3х)=−2(−3x)+5, which simplifies to 6x+56x+5.
Choices A, C, and D are incorrect and may be the result of miscalculations in the substitution or of misunderstandings of how to evaluate f(−3x)f(−3x).
以上是聚培训为大家精选的新SAT官方指南真题及答案解析,欢迎考生下载新SAT数学官方指南完整套题,方便在备考中使用。
SAT数学考试知识点解析汇总 | |
SAT数学考点解析:图形特点 | SAT数学考点解析:不等式 |
SAT数学考点解析:二次方程图形 | SAT数学考点解析:函数解析 |
SAT数学考点解析:分数式化简 | SAT数学考点解析:一次函数 |
SAT数学考点解析:弧长公式 | SAT数学考点解析:等式 |
SAT数学考点解析:二元一次方程组 | SAT数学考点解析:数据分析 |
SAT数学考点解析:线性方程直线斜率 | SAT数学考点解析:数据随机抽样 |
SAT数学考点解析:统计学图表题型 | SAT数学考点解析:散点图 |
SAT数学考点解析:统计学实验设计 | SAT数学考点解析:平均数 |
SAT数学考点解析:图表筛选数据 | SAT数学考点解析:表格题 |
SAT数学考点解析:二次函数求根判别式 | SAT数学考点解析:一次函数 |
SAT数学考点解析:三角形平面图形 | SAT数学考点解析:比例问题 |
SAT数学考点解析:线性和指数方程 | SAT数学考点解析:函数图像 |
SAT数学考点解析:相似三角形 | SAT数学考点解析:一次方程 |
SAT数学考点解析:函数图像应用题 | SAT数学考点解析:图表 |